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๏  Intense laser and particle beams can generate relativistic electron– positron beams with 
densities approaching quasi-neutrality [1].  

๏  These beams offer a platform to investigate the interaction of pair beams with background plasmas, 
as relevant to astrophysical environments, and determine the nature of the modes.

๏ Recently, laboratory-based proton beam has led to generate high number of electron-positron 
pairs at HiRadMat experiment, CERN [2].

๏ We use the OSIRIS 4.0 Particle-In-Cell Code for simulations [3].
๏ The density of background plasma and beam equal. The density profile is 𝜂 = 𝜂![1 − Θ(𝑟 − 𝑟")] 

[4].

๏ We consider fluid treatment, for perturbed field 𝐸
⃗
= 𝐸$𝑖

̂
+ 𝐸&𝑘

̂
. Parameters are normalized to 𝜔'.

๏ The thermal spread of the beam is neglected, i.e cold-beam regime.

Motivation

Conclusions & Future work
• The bulk electrostatic modes dominate the electromagnetic modes in our cold  relativistic 

beam setup over a range of k(components, during initial stages of instability.
• Dispersion relation is obtained at beam surface for large radius case. The growth rate 

drops with beam thickness. The bulk growth is larger than the surface instabilities.
• Next steps include investigating surface waves from simulation results and manuscript

preparation.
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a)

Bulk Oblique Modes

Figure 3: The plot of growing modes as a function of the radius of
the beam 

Surface Oblique Modes
Due to beam’s sharp profile, the fields obey certain 
boundary conditions, which depend on the cylindrical 
parameters .  Region 1 = Beam, region 2 = plasma.

The dispersion relation at the surface
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Setup

Boundary condition found for oblique incidence

At 𝑟" ≫ 𝜎, the dispersion relation is
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Figure 2: a) The comparison of contour plots of growth rate vs growing modes of azimuthal B field b) Same as 
figure a) but for a lower value of Lorentz factor. c) A 3D mapping of growth rate vs 𝑘!	𝑘" d) Growth rate measured 
from OSIRIS simulation as a function of normalized time. e) The log-contour plot shows ratio of electrostatic (ES) 
and electromagnetic (EM) energy, and we find that ES modes are dominant for a range of 𝑘! and 𝑘" 

where, 𝑆 =
𝜔#"
$ 𝑣%
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Expressions of the parameters in the dispersion relation

Figure 1: a) An 𝑒&𝑒'beam propagating in background stationary 
unmagnetized plasma ( electron-ion plasma). b) Oblique filamentation 
inside bulk of the beam in OSIRIS simulation [3]
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