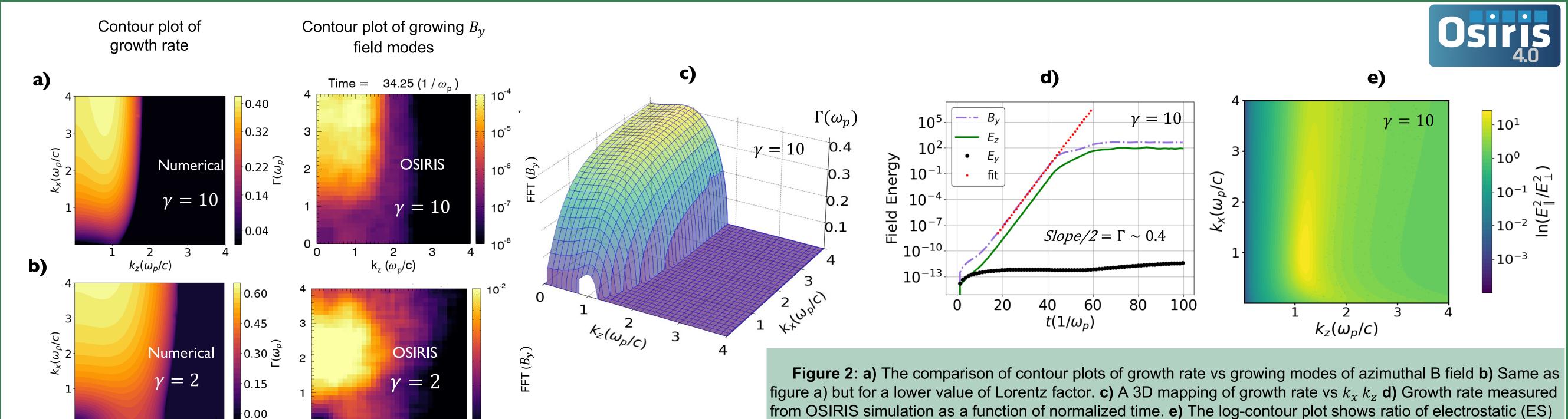
PhD Open Days

On the growth rates of bulk and surface modes in an e^-e^+ beam

X-Maser PhD programme


Ankur Nath (ankur.nath@tecnico.ulisboa.pt)

Motivation

- o Intense laser and particle beams can generate relativistic electron— positron beams with densities approaching quasi-neutrality [1].
- These beams offer a platform to investigate the interaction of pair beams with background plasmas,
 as relevant to astrophysical environments, and determine the nature of the modes.
- Recently, laboratory-based proton beam has led to generate high number of electron-positron pairs at HiRadMat experiment, CERN [2].
- We use the OSIRIS 4.0 Particle-In-Cell Code for simulations [3].
- The density of background plasma and beam equal. The density profile is $\eta = \eta_0[1 \Theta(r r_b)]$ [4].
- We consider fluid treatment, for perturbed field $E = E_x i + E_z k$. Parameters are normalized to ω_n .
- o The thermal spread of the beam is neglected, i.e cold-beam regime.

Plasma v_0 Figure 1: a) An e^-e^+ beam propagating in background stationary unmagnetized plasma (electron-ion plasma). b) Oblique filamentation inside bulk of the beam in OSIRIS simulation [3]

Surface Oblique Modes

 $k_z(\omega_p/c)$

Due to beam's sharp profile, the fields obey certain boundary conditions, which depend on the cylindrical parameters. Region 1 = Beam, region 2 = plasma.

Boundary condition found for oblique incidence

$$\frac{\partial E_{z2}}{\partial r} - \left(1 - \frac{\omega_{b\perp}^2 v_0}{k_z \Delta c^2}\right) \frac{\partial E_{z1}}{\partial r} = \frac{-i\omega_{b\perp}^2}{c^2 k_z} E_{r1}$$

The dispersion relation at the surface

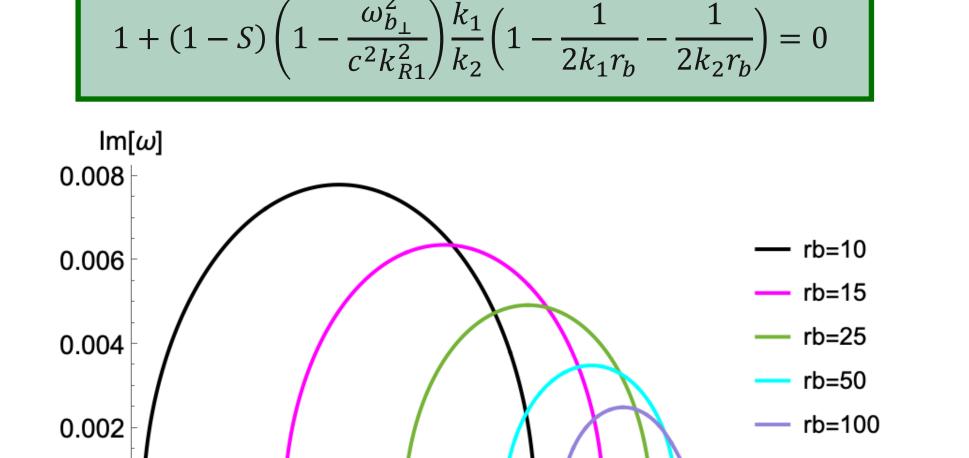
$$I_0(k_1 r_b) + (1 - S) \left(1 - \frac{\omega_{b\perp}^2}{c^2 k_{R1}^2} \right) \frac{k_1 I_1(k_1 r_b)}{k_2 K_1(k_2 r_b)} K_0(k_2 r_b) = 0$$

where,
$$S = \frac{\omega_{b_{\perp}}^2 v_0}{k_z \Delta c^2}$$

Figure 3: The plot of growing modes as a function of the radius of the beam

Expressions of the parameters in the dispersion relation

$$A = ik_z - \frac{iv_0\omega_{b\perp}^2}{c^2\Delta}$$
 $\Delta = \omega - v_0k$


$$\omega_R^2 = rac{\kappa_z c^2 + \omega_p + \omega_{b\perp} - \omega}{c^2} \qquad \omega_{b\parallel}^2 = rac{q^2 n_0}{m \epsilon_0 \gamma_b}$$

$$\omega_{Z}^{2}=rac{\omega_{p}^{2}+\omega_{b\parallel}^{2}\omega^{2}/\Delta^{2}-\omega^{2}}{c^{2}} \qquad \omega_{b\perp}^{2}=rac{q^{2}n_{0}}{m\epsilon_{0}\gamma_{0}}$$

$$C = -\left(rac{A}{k_R^2} + rac{iv_0}{\Delta}
ight) \qquad \qquad \omega_p^2 = rac{q^2 n_0}{m\epsilon_0}$$

and electromagnetic (EM) energy, and we find that ES modes are dominant for a range of k_x and k_z

2.00

1.99

2.01

Conclusions & Future work

- The bulk electrostatic modes dominate the electromagnetic modes in our cold relativistic beam setup over a range of k_z components, during initial stages of instability.
- Dispersion relation is obtained at beam surface for large radius case. The growth rate drops with beam thickness. The bulk growth is larger than the surface instabilities.
- Next steps include investigating surface waves from simulation results and manuscript preparation.

References

[1] Sarri G, Poder K, Cole J et al (2015) Nat. Commun. 6 6747

1.97

[2] Arrowsmith, C.D., Simon, P., Bilbao, P.J. *et al.* (2024) Nat Commun 15, 5029 [3] Fonseca R et al (2002) Lecture Notes in Computer Science vol 2331

1.98

[4] Shanahan W R (1986) Phys. Fluids 29 1231–7

The authors acknowledge the funding by (1801P.01293.1.01) X-MASER – 2022.02230.PTDC – IST ID,FCT/MCTES (PIDDAC) and UID/50010 Instituto de Plasmas e Fusão Nuclear

