PhD Open Days

NeRF View Synthesis: Subjective Quality Assessment and Objective Metrics Evaluation

Pedro Martin

I. Introduction

• Neural Radiance Fields (NeRF) methods are a powerful technique for synthesizing novel views of a visual scene from a set of input views.

 $\{(x_0, d_0), (x_1, d_1), \cdots, (x_N, d_N)\}$

Position + Direction

- NeRF represent 3D scenes as a radiance field typically modelled by a Multi-Layer Perceptron (MLP).
- Neural-network-free methods have also been proposed seeking the rendering time reduction.

The NeRF methods inputs are:

- 3D spatial location
- 2D viewing direction
- The NeRF methods outputs are:
- 3D RGB color
- Opacity level
- NeRF view synthesis may generate
 - artifacts:Floaters
 - Flawed geometry
 - Flickering object edges

Objective quality metrics typically used for NeRF evaluation:

- PSNR
- SSIM
- LPIPS

Dataset webpage

 $\{(\boldsymbol{c_0}, \sigma_0), (\boldsymbol{c_1}, \sigma_1), \cdots, (\boldsymbol{c_N}, \sigma_N)\}$

Color + Density

Output

 $d = (\theta, \varphi)$

 $\mathbf{x} = (x, y, z)$

Ground Truth

Loss function: || □ - □ ||

Volume rendering

2. Objectives and Contributions

Objectives

- To study, in a subjective way, the impact of the different artifacts produced by several NeRF methods for different classes of visual scenes.
- To evaluate the performance of state-of-the-art image and video quality assessment (IQA and VQA) metrics considering the results obtained on the subjective assessment study.

Contributions

• The evaluation of objective quality assessment metrics developed for 2D images and video, using several scene classes:

3. NeRF Creation Framework

- The NeRF creation framework is composed by three main steps:
 - NeRF training
 - View synthesis
 - Subjective assessment

- NeRF methods were selected according to:
 - Synthesis quality performance
 - Training and synthesis speed
 - Suitability to the considered scene classes
- Due to the high training and synthesis times of MLPs a branch of MLP-free methods has emerged based on voxel grids.

NeRF Method	Approach	Scene Application				
DVGO	Grid-based	All				
Instant-NGP	Grid-based	Synthetic scenes				
Mip-NeRF 360	MLP-based	Unbounded scenes				
Nerfacto	MLP-based	Unbounded scenes				
NeRF++	MLP-based	Unbounded scenes				
Plenoxels	Grid-based	360° synthetic scenes				
TensoRF	Grid-based	Synthetic scenes				

4. Experimental Setup

Test Material

- For 360° scenes:
 - 360° synthetic scenes: Realistic Synthetic 360° (4 scenes, 100 training images, 800×800 pixels)
 - 360° real scenes: Tanks and Temples (4 scenes, 226-277 training images, 1077×546, 1008×548, 982×546, and 980×546 pixels, respectively)
- For FF scenes:
 - FF synthetic scenes: IST/IT dataset (4 scenes, 228-377 training images, 960×540 pixels)
 - FF real scenes: IST/IT dataset (4 scenes, 300 training images, 960×540 pixels)

Subjective Assessment Methodology

- **DSCQS** subjective assessment method:
 - Score: 0 100 (with 5 quality labels: bad, poor, fair, good, excellent)
 - Synthesized and reference videos
 - Side-by-side with random order
- Total number of stimuli: 88 pairs
- Test session duration: around 30 minutes
- Monitor: computer display with 1920×1080 pixels
- Total number of participants: 22 non-expert
 Final scores were converted to DMOS values

- **NVS literature:** PSNR-Y, PSNR-YUV, SSIM, MS-SSIM, LPIPS, and FovVideoVDP
 - **Best performances:** PSNR-HVS IW-SSIM VIEVIED FSIM VSI MAD GMSD and NI PE
- Best performances: PSNR-HVS, IW-SSIM, VIF, VIFp, FSIM, VSI, MAD, GMSD, and NLPD
 Learning-based metrics: LPIPS, ST-LPIPS, DISTS, and VMAF.

5. Experimental Results and Conclusions

- Metrics' performance evaluation:
 - Pearson Linear Correlation Coefficient (PLCC)
 - Spearman Rank Order Correlation Coefficient (SROCC) g 4
 - Disparity compensation:
 - Block-matching algorithm
 - Macroblock size of 32×32 pixels
 - Search window of 12 pixels

• The coverage of the total span of qualities is verified for both real and synthetic scenes.

NVS Method	Re	eal	Synthetic			
IN V S Iviethou	FF	360°	FF	360°		
DVGO	2.31	2.28	2.11	3.90		
Instant-NGP	N/A	N/A	3.50	4.04		
Mip-NeRF 360	3.18	3.64	4.54	N/A		
NeRF++	1.13	2.37	3.40	N/A		
Nerfacto	4.28	3.41	4.92	N/A		
Plenoxels	N/A	N/A	N/A	3.94		
TensoRF	N/A	N/A	2.52	4.31		
Average	2.72	2.92	3.50	4.05		

- 360° synthetic scenes are the only class of scenes with an average DMOS rating greater than 4.
- 360° real scenes have, on average, higher DMOS values than FF real scenes.

PLCC													
Metric	Synthetic			Real			A 11	Real*			A 114	Mad	
	360	FF	All	360	FF	All	All	360*	FF*	All*	All*	Met	
MSE-RGB	0.94	0.89	0.87	0.59	0.78	0.57	0.65	0.70	0.66	0.59	0.73	MSE-RO	
PSNR-Y	0.94	0.84	0.86	0.57	0.66	0.51	0.67	0.65	0.70	0.56	0.70	PSNR-Y	
PSNR-YUV	0.94	0.85	0.86	0.63	0.63	0.49	0.64	0.76	0.64	0.52	0.67	PSNR-Y	
PSNR-HVS	0.93	0.85	0.86	0.58	0.69	0.53	0.69	0.60	0.81	0.64	0.73	PSNR-H	
SSIM	0.90	0.80	0.69	0.70	0.70	0.47	0.60	0.82	0.72	0.57	0.62	SSIM	
MS-SSIM	0.95	0.88	0.77	0.71	0.72	0.53	0.65	0.78	0.80	0.63	0.69	MS-SSI	
IW-SSIM	0.93	0.83	0.80	0.66	0.67	0.53	0.68	0.82	0.87	0.77	0.78	IW-SSI	
VIF	0.91	0.74	0.77	0.67	0.61	0.51	0.66	0.77	0.80	0.73	0.75	VIF	
VIFp	0.90	0.75	0.75	0.77	0.63	0.51	0.63	0.86	0.78	0.70	0.71	VIFp	
FSIM	0.93	0.87	0.73	0.69	0.72	0.48	0.66	0.83	0.81	0.65	0.63	FSIM	
VSI	0.93	0.77	0.78	0.65	0.75	0.60	0.68	0.77	0.83	0.78	0.77	VSI	
MAD	0.87	0.63	0.71	0.76	0.67	0.56	0.67	0.68	0.78	0.67	0.71	MAD	
LPIPS	0.87	0.90	0.55	0.75	0.75	0.67	0.60	0.90	0.87	0.76	0.64	LPIPS	
ST-LPIPS	0.92	0.92	0.77	0.88	0.82	0.68	0.66	0.87	0.90	0.71	0.68	ST-LPII	
DISTS	0.94	0.83	0.81	0.61	0.71	0.67	0.76	0.70	0.78	0.72	0.76	DISTS	
GMSD	0.95	0.81	0.82	0.74	0.74	0.52	0.67	0.84	0.81	0.68	0.72	GMSD	
NLPD	0.95	0.87	0.86	0.65	0.73	0.52	0.69	0.70	0.79	0.61	0.72	NLPD	
VMAF	0.87	0.76	0.79	0.81	0.64	0.61	0.64	0.78	0.92	0.80	0.77	VMAF	
FovVideoVDP	0.96	0.90	0.80	0.49	0.76	0.65	0.70	0.41	0.83	0.65	0.73	FovVide	

Metric	Synthetic			Real			All		All*		
	360	FF	All	360	FF	All	AII	360*	FF*	All*	All
MSE-RGB	0.95	0.72	0.82	0.57	0.64	0.51	0.69	0.49	0.60	0.54	0.71
PSNR-Y	0.95	0.77	0.82	0.57	0.64	0.50	0.68	0.50	0.64	0.48	0.70
PSNR-YUV	0.95	0.74	0.83	0.59	0.61	0.48	0.66	0.54	0.55	0.46	0.68
PSNR-HVS	0.95	0.77	0.81	0.57	0.66	0.48	0.69	0.51	0.70	0.50	0.73
SSIM	0.87	0.67	0.65	0.64	0.52	0.31	0.59	0.79	0.64	0.49	0.62
MS-SSIM	0.96	0.68	0.74	0.74	0.66	0.44	0.67	0.74	0.70	0.51	0.70
IW-SSIM	0.93	0.68	0.74	0.68	0.67	0.48	0.68	0.81	0.87	0.73	0.75
VIF	0.91	0.64	0.72	0.67	0.61	0.43	0.65	0.77	0.78	0.65	0.71
VIFp	0.92	0.67	0.74	0.81	0.63	0.45	0.65	0.89	0.77	0.68	0.70
FSIM	0.92	0.67	0.62	0.77	0.58	0.39	0.64	0.81	0.80	0.63	0.61
VSI	0.94	0.58	0.71	0.69	0.62	0.56	0.67	0.71	0.81	0.77	0.73
MAD	0.83	0.58	0.69	0.71	0.64	0.47	0.67	0.54	0.77	0.62	0.70
LPIPS	0.74	0.86	0.39	0.75	0.78	0.59	0.55	0.89	0.87	0.72	0.57
ST-LPIPS	0.90	0.87	0.77	0.86	0.80	0.61	0.70	0.87	0.85	0.65	0.71
DISTS	0.94	0.69	0.77	0.64	0.70	0.64	0.72	0.70	0.81	0.70	0.72
GMSD	0.95	0.67	0.75	0.80	0.54	0.41	0.67	0.77	0.74	0.61	0.72
NLPD	0.95	0.70	0.81	0.61	0.66	0.43	0.68	0.71	0.70	0.53	0.71
VMAF	0.89	0.57	0.74	0.75	0.76	0.50	0.67	0.61	0.88	0.70	0.73
FovVideoVDP	0.96	0.70	0.75	0.45	0.71	0.44	0.68	0.39	0.81	0.51	0.71

SROCC

- Learning-based and VQA metrics stand out.
- Metrics based on pixel-wise differences are the most effective for synthetic scenes.
- Metrics' performance benefits greatly from disparity compensation

