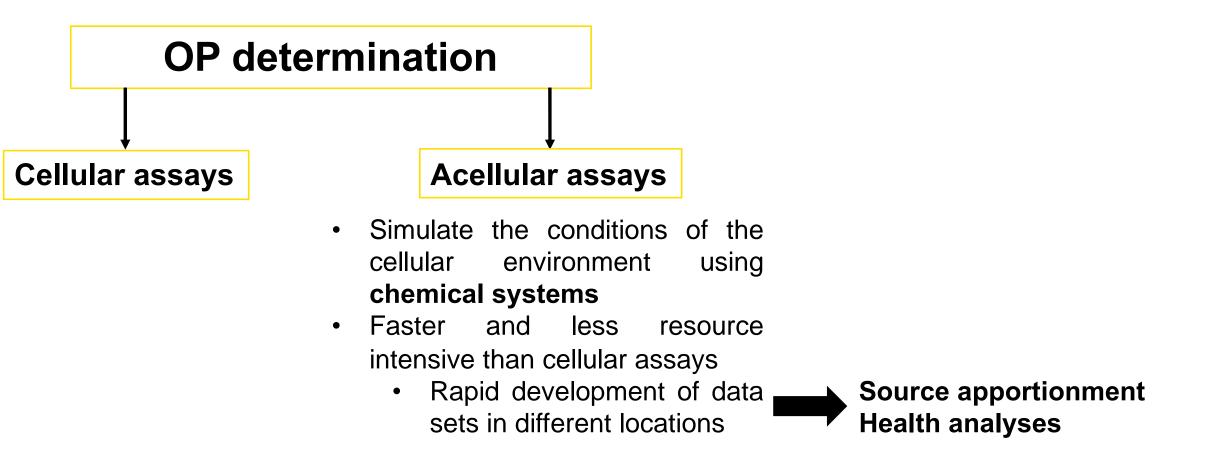
PhD Open Days

Oxidative Potential : A New Perspective of Air Pollution Health Effects

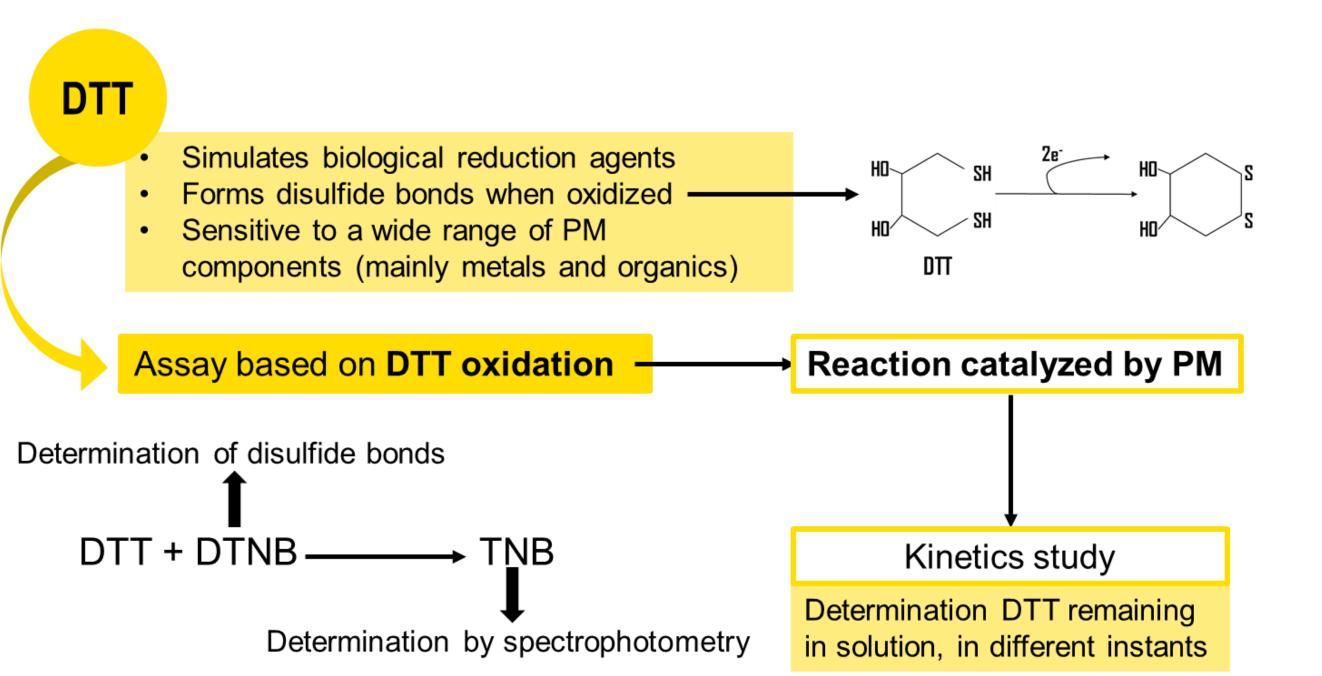
PHD PROGRAMME IN ENVIRONMENT ENGINEERING

CAROLINA VICENTE REIS (carolina.reis@ctn.tecnico.ulisboa.pt)

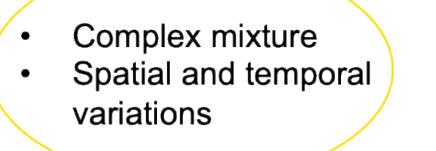
Air pollution and human health


Oxidative Potential

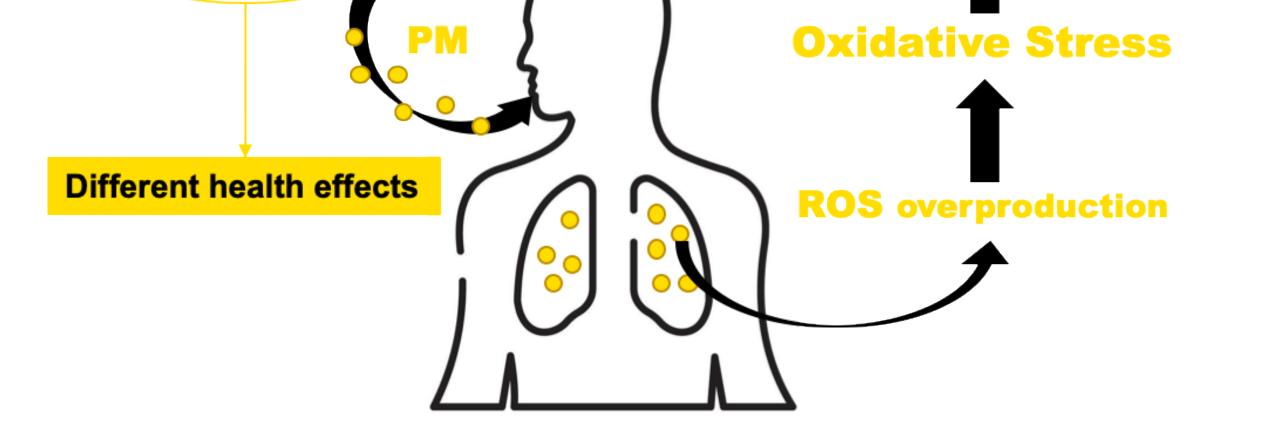
- Air pollution (outdoor & indoor) was associated with 8.1 million premature deaths in 2021^[1]
- Outdoor air pollution accounts for more than half ${\bullet}$ of those deaths, worldwide ^[1,2]


High blood pressure			8.08 million	10.85 million
Air pollution (outdoor & indoor)		6.18 milli		
Smoking		5.29 million		
High blood sugar utdoor particulate matter pollution		4.72 million		
Obesity		3.71 million		
High cholesterol		3.65 million		
Indoor air pollution		11 million		
Diet high in sodium				
Alcohol use				
Diet low in fruits				
Diet low in whole grains				
Low birthweight				
Secondhand smoke				
Unsafe sex				
Diet low in vegetables				
Unsafe water source	· · · · · · · · · · · · · · · · · · ·			
Diet low in nuts and seeds				
Low physical activity				
Unsafe sanitation				
Child wasting				
Drug use				
Low bone mineral density				
No access to handwashing facility				
Child stunting				
Non-exclusive breastfeeding				
Iron deficiency			Source:IHN	1E
Vitamin A deficiency				
		of deaths by risk		

PM regarding its assessed has been concentration, without considering the complexity of its components which may have differing health effects ^[3,4]


- OP combined with information about the sources and composition of PM is important to create **new** directives^[8]
- The lack of a standard method makes it difficult to compare results ^[7]

DTT assay is one of the most common methods to assess OP


- PM can induce **OXIDATIVE STRESS**
 - ROS concentration exceeds the body's antioxidant capacity^[4]
 - Associated with several health outcomes including cardiovascular diseases, obstructive pulmonary disease, kidney disease, neurodegenerative diseases and cancer^[5]
- **OXIDATIVE POTENTIAL (OP)** measures the capacity of PM to induce the formation of ROS in the human body [6,7]

Aims of the PhD project

- **Optimization** of OP methodology (via DTT assay), based on the process described by Chirizzi et al. (2017)^[9]
- Chemical characterisation of indoor and outdoor PM_{25} samples
- Categorisation of PM_{25} samples by their oxidation potential
- Identification of main drivers of OP in fine aerosols
- Categorisation of pollution sources based on their health impact and strategies to minimise it

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT, Portugal) through the PhD fellowship PRT/BD/154533/2023

Validation of estimation model of OP in fine aerosols

References

[1] Our World in Data (2024) Available in: https://ourworldindata.org/grapher/number-of-deaths-by-risk-factor (accessed on October 2024) [2] World Health Organization (2024) "Ambient (Outdoor) Air Pollution", available in: https://www.who.int/news-room/factsheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on October 2024)

[3] Gao et al. (2020) Characterization and comparison of PM2.5 oxidative potential assessed by two acellular assays, Atmos Chem Phys 20(9), 5197–5210.

[4] Bates et al. (2019) Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects, Environ Sci Technol 53(8), 4003-4019.

[5] Hajam et al. (2022) Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives, Cells 11(3), 552. [6] Almetwally et al. (2020) Ambient air pollution and its influence on human health and welfare: an overview, Environ Sci Pollut Res 27, 24815-24830.

[7] Jiang et al. (2019) Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols, Atmosphere-Basel 10(10), 571

[8] Cho et al. (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin, Environ Res 99(1), 40-47. [9] Chirizzi et al. (2017) Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10, Atmos Environ 163, 1-8.

Supervisors: Nuno Canha Marta Almeida Carla Gamelas

PhD Programme in Environment Engineering

phdopendays.tecnico.ulisboa.pt