PhD Open Days

HEAVY NEUTRINO-ANTINEUTRINO OSCILLATIONS

Bruno M. S. Oliveira (b.m.silva.oliveira@tecnico.ulisboa.pt)

From the Missing Neutrinos to the Seesaw Mechanism

The **Standard Model** describes all known fundamental particles and their interactions

Experiment: Theory: No right-chiral neutrinos Flavour oscillations

Proton Colliders Detectable final state leptons Measure LN^C/v directly Oscillations in the number of $LN^{C/V}$ events 12LNC LNV $Z = 6.66\sigma$ --- Data 10🗕 🚥 Fit 8

6

Neutrinos are **massless** Neutrinos are **massive**

Add **right-chiral** neutrinos Sterile under the Standard Model's gauge group **Dirac masses** (M_D) **Majorana masses** (M_M) Left- and right-chiral fields Right-chiral fields

 $\tau / \tau_{\rm dec}$

The **interplay** between the two masses gives rise to the **seesaw mechanism** Light neutrinos ν with $M_{\nu} \simeq \frac{M_D \otimes M_D}{M_M}$ Heavy neutrinos N with $M_N \simeq M_M$

Symmetry Protected Seesaw Scenarios

Collider testable models require symmetry \Rightarrow Mass splitting between the heavy neutrinos

Resolvability limited by number of events

Heavy Neutrino-Antineutrino Oscillations

0.10.20.30.50.40 p_ℓ/m_Z

Resolvability limited by analysis power

Discovery Potential at FCC-ee

 $\tau / \tau_{\rm dec}$

While the existence of heavy neutrinos has been excluded within the grey region, the FCC-ee shows great potential for discovering of heavy neutrino-antineutrino oscillations inside the coloured boundaries

 $\tau/ au_{
m dec}$

Jan Hajer, Stefan Antusch, Filipe Joaquim

Advanced Studies Diploma in Physics

phdopendays.tecnico.ulisboa.pt