PhD Open Days

Adaptive Network Edge Orchestrator for Dynamic Environments

Decision Phas

DRL Agent

Double DQN

ords of

Loads

Nodes

Module

Module

State

Predictions

PHD PROGRAMME IN ELECTRICAL AND COMPUTER ENGINEERING (PDEEC)

Eliana Neuza Silva (eliananeuza@tecnico.ulisboa.pt)

Edge Computing (EC)

- Moves the Cloud's resources and processing closer to devices.
- Decreases Latency, Delay, and supports high Mobility.

 Propels the future of Vehicular Networks, Internet of Things (IoT), Smart Cities, Advanced Healthcare, and many more.

1. Introduction & Motivation

Vehicular Edge Computing (VEC) Offloading Management

Smart and self-driving vehicles run delay sensitive applications (APPs), stemming from operational and safety demands, that should, be computed at the network Edge, closer to the vehicles, to reduce latency.

 \rightarrow Because of the high demand of requests/replies at the Edge, and vehicle mobility it is essential to have a solution to manage vehicular APPs' offloads to the network, a mechanism called orchestration.

Edge Offloading Orchestration attempts to solve:

- Best Offloading Location
- Routing Optimization
- Edge Resource Allocation
- Load Balancing of Network Nodes
- Our DRL algorithm outperforms other solutions since it:
 - . Removes from the offloading decision nodes that won't have
 - enough CPU and that don't match the predicted movement.
 - Predicts next possible task using task dependency.
 - Decreases task failure and processing latency.

4. Simulation & Tests Scenario

5. Tests Results on Performance: APP QoE, Task Failure & Service Time

2. Deep Reinforcement Learning (DRL) Offloading Orchestrator

APP's Requirements DRL Rewards Environment State

START

Ŧ

dictive Mode

Predict Edge Nodes Available CP

Next Incoming Task Next Closest Edge Node

Make Decision

L NO

Train LSTM N

edictions (Prediction Module)

END

Add Current

Available CPU Task Information

st Node

To Train Sample

t

(Predictions) and Follow the Offloading Decision

into the Decision Model

to Make Decisions

Send Decis

→ Predicts: Next Tasks, Future Edge Node Loads and Next Vehicle Location.

- Performing Automatic Intersection of Several Input Variables -

- Using Environment Historical Records to Predict DRL Rewards.

3. Adaptive Network Edge Orchestrator Architecture

Environment

CPU Available Next Task Future Node

learning

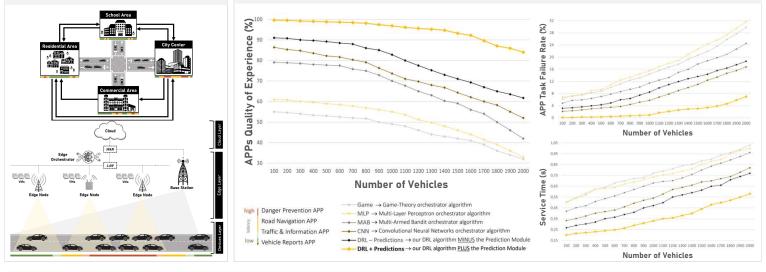
Prediction → Long Short Memory (LSTM) + Deep Neural Networks (DNN)

observe Environment State

Prediction P

LSTM Networks

DNNs


Action

Rewards

Actions

 \rightarrow Determines the Best Offloading Locations for the APPs by:

 $\textbf{Decision} \rightarrow \textbf{DRL Agent + Double Deep Q Network} (Double DQN)$

6. Conclusions & Future Work

→ The Prediction Module (using LSTM with DNNs) significantly improves the training speed and accuracy of the model, increasing performance.

 \rightarrow Achieves quicker computation by reducing offloading locations and decision time.

→ Makes good offloading decisions using the Double Q Network automatic intersection of several input features (Predictions, Environment, Rewards, APPs Requirements.

Next Steps: Develop a task migration mechanism, to migrate tasks partially/fully between edge or cloud, taking into mind the application's task dependency.

Professor Fernando Mira da Silva

PhD in Electrical and Computer Engineering

phdopendays.tecnico.ulisboa.pt