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Introduction

Classical Theory of continuum mechanics

In classical continuum mechanics the equation of motion of a deformable
solid, in Lagrangian form, is given in the reference configuration as

where P is the first Piola-Kirchhoff stress tensor, b is the body force
vector, o is the undeformed mass density and u is the displacement field,
and its second derivative is the acceleration field. The divergence of the
stress tensor (which represents the equilibrium of internal forces) introduces
restrictions to a given body deformation, since this deformation should be
sufficiently smooth in order for the stress tensor to be differentiable.

Peridynamic formulation

In order to overcome these difficulties, in peridynamics (PD) the
equilibrium of internal forces is changed from the divergence of the stress
tensor to an integral over a horizon of points

f(x’,x)dV’ + b(x)
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pou(x) =

In the above equation f is the bond force density, representing a bond
interaction between point x and a neighbor x’. It also contains constitutive
information.

Here, discontinuities such as cracks, which lead to singularities in the
classical PDEs, do not produce any problems in the PD equations.
Moreover, the removal of interactions between points makes it appropriate
for conducting crack propagation analysis. Furthermore, the nonlocal
character of the equations provides an adequate setting for the simulation
of multiscale phenomena.
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A peridynamaic body subjected to deformation and its kinematics

Computational model

In peridynamics, one can simply discretize the equations with a
straightforward meshless point collocation method, due to its simplicity.
The domain is divided in a finite number of points, and to each point is
attributed an area/volume

pii’ = Z f(Mjns En) Ve + b;
n=1
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Applications

In the current work, different applications have been developed to
demonstrate the capabilities and advantages of peridynamics in
computational mechanics

o Firstly, we present results of an electromechanical model for the
simulation of fracture in piezoelectric solids
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Piezoelectric tenston test: a notched specimen 1is subjected to traction
loading, leading to crack propagation. The fracture loads obtained in the
simulations show good agreement with experimental results, except at high
applied electric fields.

e oecondly, we present results from an integrated multibody dynamics
with fracturable flexible bodies framework, for simulation of multibody
mechanisms
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Pendulum subjected to tmpact: A pendulum with initial velocity impacts an
obstacle leading to catastrophic failure.

o Finally, application of peridynamics to topology optimization designs is

presented
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Topology optimization of a cantilever beam with centered load: results
demonstrate mesh independency due to the nonlocal character of the
peridynamic formulation. The horizon, the intrinsic peridynamic length
scale, restricts the features and details of the optimal designs.
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