PhD Open Days

Error Feedback Compressed Vertical Federated Learning

Carnegie Mellon Portugal Double Degree Program

Pedro Valdeira, pvaldeira@cmu.edu

Background on Vertical Federated Learning

Dataset & partitioned across K clients,

featy res

samples-

D) Dy

who want to collaborate to learn the parameters X := (X, X{, - - -, Xg)

of a model: AX) = p(x, H{(X)), ..., He(Xp)),

where H (x;) := H,(X;; &, ), without sharing local data.

{ Communication is often the bottleneck, so communication

efficiency is a major challenge.

Prior art

Algorithm Vertical Federated Learning |1|

Input : initial point ", step-size 1
fort=20,....,7T—1do

/

Server samples B* C [N] and sends B* and x}, to all clients
for k € [K]|p in parallel do
Compute :Btfl

" at k using coordinate descent
if £ > 0 then

t+1

SO Gk W N

L Client £ computes and sends C(Hyg:(x," ~)) to the server

We say 6 : RY - R%is a (biased) compressor if there exists a € (0,1]

such that
E|€(x)—x||* < (1 -a)|x||*, VxeR?.

This includes top-k sparsification, quantization,...

-

N

a — 1, requiring a vanishing stepsize to converge ata © (1/ﬁ> rate.

. . . . )
Problem of direct compression: compression error does not vanish unless

EFVFL (our method)

Algorithm : Error Feedback Compressed Vertical Federated Learning

Input : initial point x”, step-size 7, initial estimates {GY = C(Hy(x}))}

1 fort=20,...,7—1do

2 Server samples B' C [N] and sends B, {G} 4. }, and x{ to all clients
3 for k € [K]|p in parallel do

4 Compute :vt“ at k using a coordinate descent step

5 if £ > 0 then

6

7

Client k computes C! = C(Hyp: (z}"') — Gt 5,) and sends it to the server
Update Gt = Gt 50 + Cf and G)' = G4, for i & B at client k and at the server

Convergence guarantees:

- If fand ¢ are L-smooth and H; have a bounded gradient norm,

EFVFL converges ata O (1/T) rate;
* If we further assume the PL condition, we have linear convergence.

Experiments (shallow network to classify MNIST)
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