PhD Open Days

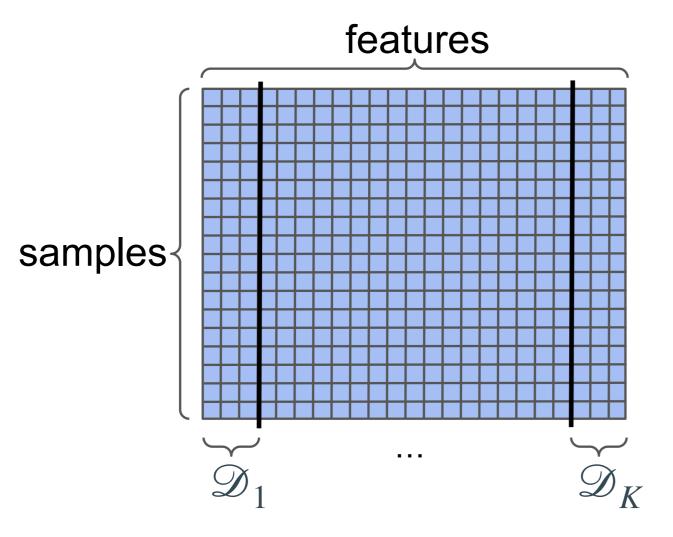
Error Feedback Compressed Vertical Federated Learning

Carnegie Mellon Portugal Double Degree Program

Pedro Valdeira, pvaldeira@cmu.edu

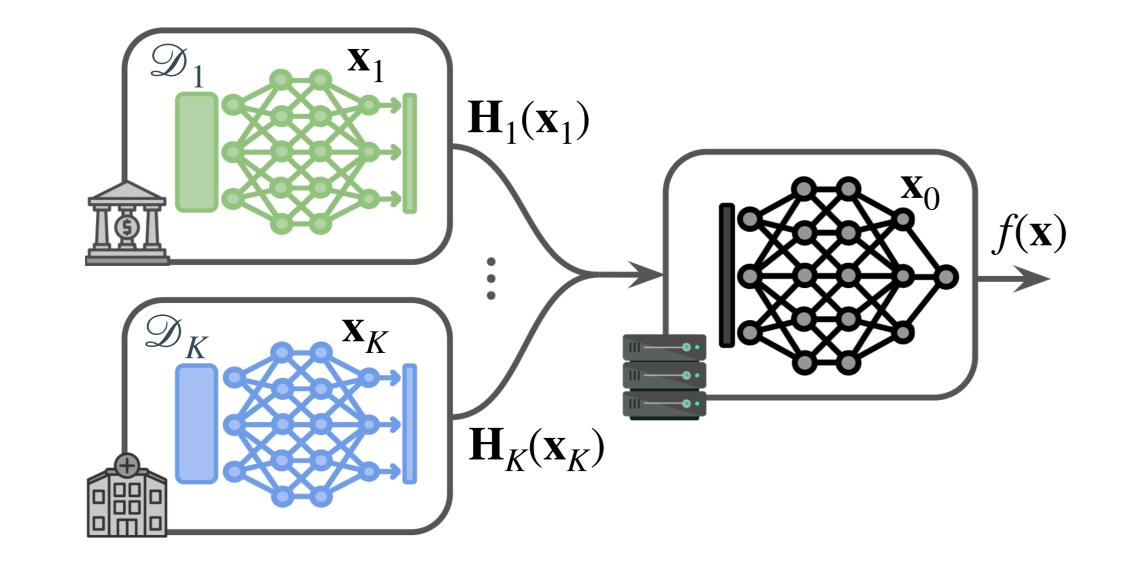
Background on Vertical Federated Learning

Dataset \mathscr{D} partitioned across *K* clients,



who want to collaborate to learn the parameters $\mathbf{x} := (\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_K)$ of a model: $f(\mathbf{x}) := \phi(\mathbf{x}_0, \mathbf{H}_1(\mathbf{x}_1), ..., \mathbf{H}_K(\mathbf{x}_K)),$

where $\mathbf{H}_{k}(\mathbf{x}_{k}) := \mathbf{H}_{k}(\mathbf{x}_{k}; \mathscr{D}_{k})$, without sharing local data.



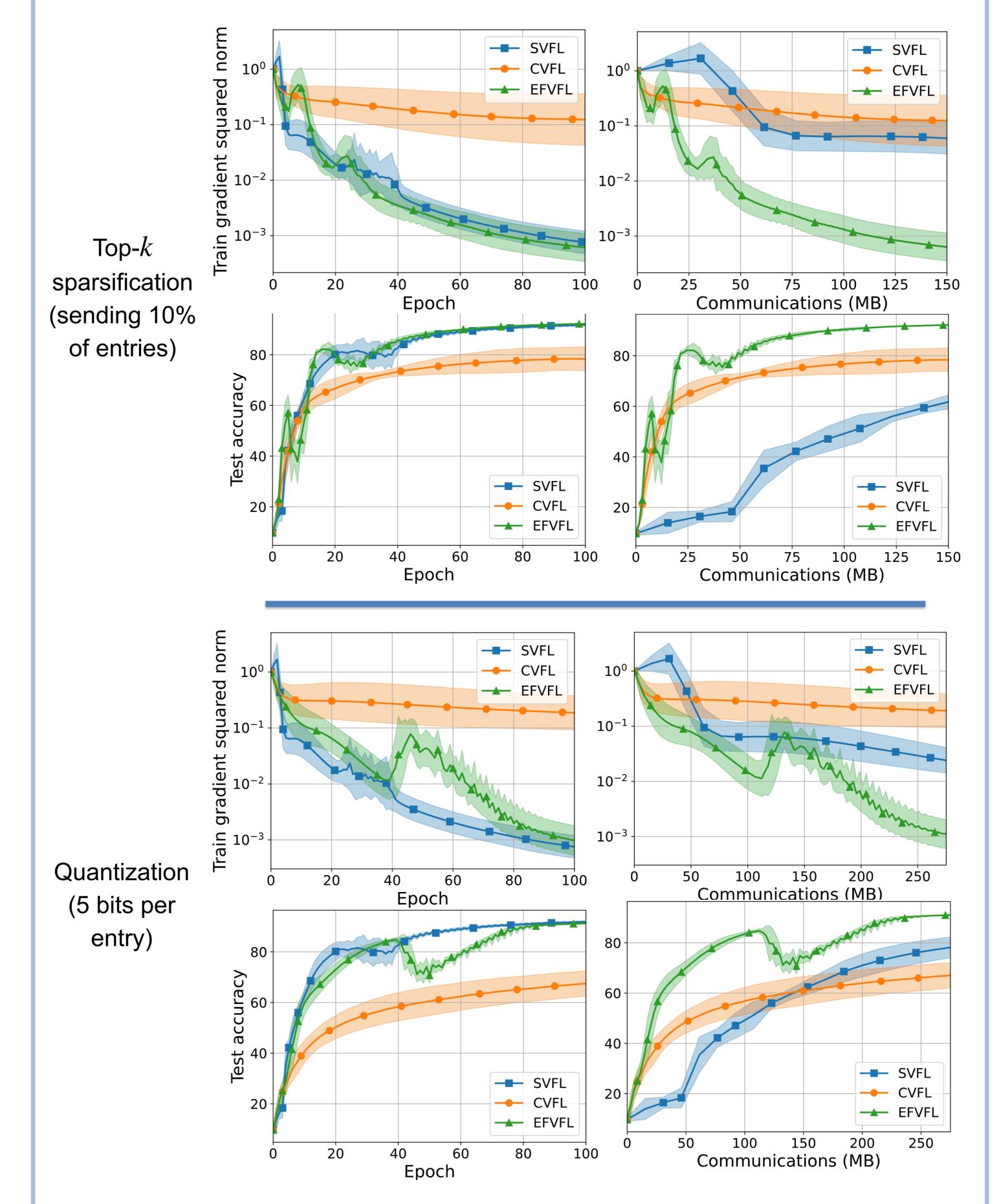
EFVFL (our method)

Algorithm : Error Feedback Compressed Vertical Federated Learning	_
Input : initial point x^0 , step-size η , initial estimates $\{G_k^0 = C(H_k(x_k^0))\}$	_
1 for $t = 0,, T - 1$ do	
2 Server samples $\mathcal{B}^t \subseteq [N]$ and sends \mathcal{B}^t , $\{\mathbf{G}_{k\mathcal{B}^t}^t\}$, and \mathbf{x}_0^t to all clients	
3 for $k \in [K]_0$ in parallel do	
4 Compute \boldsymbol{x}_k^{t+1} at k using a coordinate descent step	
5 if $k > 0$ then	
6 Client k computes $C_k^t = C(H_{k\mathcal{B}^t}(x_k^{t+1}) - G_{k\mathcal{B}^t}^t)$ and sends it to the server	
6 7 Client k computes $C_k^t = C(H_{k\mathcal{B}^t}(x_k^{t+1}) - G_{k\mathcal{B}^t}^t)$ and sends it to the server 7 Update $G_{k\mathcal{B}^t}^{t+1} = G_{k\mathcal{B}^t}^t + C_k^t$ and $G_{ki}^{t+1} = G_{ki}^t$ for $i \notin \mathcal{B}^t$ at client k and at the serve	r

Convergence guarantees:

- If f and ϕ are L-smooth and \mathbf{H}_k have a bounded gradient norm, EFVFL converges at a $\mathcal{O}\left(1/T\right)$ rate;
- If we further assume the PL condition, we have linear convergence.

Experiments (shallow network to classify MNIST)



Communication is often the bottleneck, so communication efficiency is a major challenge.

Prior art

Algorithm : Compressed Vertical Federated Learning [1]

Input: initial point x^0 , step-size η

1 for t = 0, ..., T - 1 do

- **2** Server samples $\mathcal{B}^t \subseteq [N]$ and sends \mathcal{B}^t and x_0^t to all clients
- 3 for $k \in [K]_0$ in parallel do

4 Compute
$$\boldsymbol{x}_k^{t+1}$$
 at k using coordinate descent

5 if k > 0 then

Client k computes and sends $\mathcal{C}(H_{k\mathcal{B}^t}(\boldsymbol{x}_k^{t+1}))$ to the server

We say $\mathscr{C}: \mathbb{R}^d \to \mathbb{R}^d$ is a (biased) compressor if there exists $\alpha \in (0,1]$

such that

 $\mathbb{E} \| \mathscr{C}(\mathbf{x}) - \mathbf{x} \|^2 \le (1 - \alpha) \| \mathbf{x} \|^2, \quad \forall \mathbf{x} \in \mathbb{R}^d.$

This includes top-k sparsification, quantization,...

Problem of direct compression: compression error does not vanish unless $\alpha \to 1$, requiring a vanishing stepsize to converge at a $\mathcal{O}\left(1/\sqrt{T}\right)$ rate.

Acknowledgements: this work is supported by FCT through the Carnegie Mellon Portugal Program and project UIDB/50009/2020. References: [1] Castiglia, Timothy J., et al. "Compressed-VFL: Communication-efficient learning with vertically partitioned data." ICML 2022.

Carnegie Mellon University

Advisors:

João Xavier (IST), Yuejie Chi (CMU), Cláudia Soares (NOVA)

phdopendays.tecnico.ulisboa.pt