PhD Open Days

Muon identification and gamma/hadron separation using single-layered WCDs at TeV energies PhD program in Physics Author: Borja Serrano González (LIP/IST). Contact: borjasg@lip.pt

Water Cherenkov detector design

The Mercedes WCD [1] is currently one of the candidate WCD stations for the future **Southern** Wide-field Gamma-ray Observatory (SWGO) [2].

Design optimised for muon identification:

- Dimensions: Diameter 4 m; Height 1.7 m.
- White diffusive walls.
- Three PMTs at the bottom of the WCD.
- PMT position optimised to maximise total signal uniformity and muon signal asymmetry.
- Possible additional small PMT at the top to avoid saturation.

Physics goals:

- Lower the energy threshold.
- Good shower geometric reconstruction by taking advantage of the narrow (~2 ns) direct Cherenkov light.
- Gamma/hadron separation identify muons exploring PMT signal time trace using machine learning algorithms.

Average signal time traces at stations with and without muons.

Muon identification with the water Cherenkov detector

nts

End-to-end simulations (CORSIKA and

Geant4) at ~1 TeV (reconstructed energy).

- Analysis of the signal time traces using 1D Convolutional Neural Networks to get the probability that a muon has passed through the station: $P_{\mu,i} \in [0,1]$.
- The muon tagging efficiency is about 80% while getting a false positive rate of less than 20% (similar performance for a sparse array).
- The sum of the probabilities of the selected stations provides an accurate estimator of the shower muon content with a resolution about 20% and a negligible bias for proton showers with N $\mu \ge 10$.

Gamma/hadron discrimination

The g/h discrimination variable:

$$P_{\gamma h} = \sum P_{\mu,i} \ (r_i \ge 40m)$$

- i=1**Excellent g/h separation** similar to the one
- reported in HAWC at a similar energy [3].
- Improvement over previous results using a WCD with the same dimensions and 4 PMTs [4,5].

Supervisor: Ruben Conceição (LIP/IST) **Co-supervisors:** Mário Pimenta (LIP/IST), Alberto Guillén (University of Granada) **PhD Program in Physics** para a Ciência phdopendays.tecnico.ulisboa.pt

References:

[1] P. Assis et al. Eur. Phys. J. C 82, 899 (2022).

[2] www.swgo.org

[3] A. Abeysekara et al. Astrophys. J., arXiv:1703.0696

[4] R. Conceição et al. EPJC 81 (2021) 6, 542

[5] B.S. González et al. Neural Comput & Applic 34, 5715–5728 (2022).