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● Neural network models with a very large number of parameters often 

generalize better than those with a lesser number of parameters. One 

possible contributor to this effect is that, by adding additional 

parameters, we “open” new paths for the GD to reach a lower 

minimum, in the case where it was previously stuck on a local 

minimum.

Figure 2: By adding an additional parameter, a previously local minimum (along the 
black arrow) is now a saddle point. This allows the GD method to achieve a smaller 
minimum (via the lighter arrow).

● Our goal is to formulate the learning process as an evolution of a 

probability distribution in weight-space. Here, we will study the 

dynamical signatures underlying successful learning  and the role 

of overparameterization in reaching a near-optimal solution.

Overparameterization & gradient descent

● Neural networks used in the real world are often made up of millions of 

parameters. As such, the training procedure is very expensive both in 

time and energy. Any improvements to the training procedure which 

achieve either faster or better results are of extreme importance.

● Recently, modifications of the (first-order) GD method in machine 

learning have been considered by using second-order dissipative 

Hamiltonian systems [MJ], yielding better and faster convergence  of 

neural networks.

● We can generalize these modifications to a non-Hermitian Hamiltonian 

setting. Our goal here is to compare the Hamiltonian dynamics in 

complex time with [MJ] to check if further improvements are viable.

Figure 3: Preliminary work showing numerical and analytical simulations of non 
Hermitian Hamiltonian dynamics for a gaussian coherent state.

Complex Hamiltonian Dynamics

● The renormalization group is an iterative coarse-graining scheme that 

allows for the extraction of relevant features  (i.e. operators) as a 

physical system is examined at different length scales.

● Our goal here is to understand how closely connected these two 

concepts are and to try to generalize the work done in [MS, KKC] to 

study the link between RG and data compression  in classification 

problems.

Renormalization Group
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Deep learning (DL) has achieved tremendous success. However, a 

theoretical understanding of deep neural networks (DNNs) is still lacking. 

Recently, connections between DNNs and Physics have been proposed to 

address this issue. Particularly promising are the relations of DNN learning 

with the Renormalization Group (RG) and with dissipative methods to 

improve gradient descent algorithms (GD).

Figure 1: Physics may help in bridging the gap between the foundations and practical 
applications of machine learning.

Three key areas where Physics may help shed new light are:

● The connection between overparameterization and gradient descent;

● Accelerating gradient descent training via complex Hamiltonian flows;

● Connecting deep neural networks with the renormalization group 

scheme.
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Figure 4: Block spin RG. At each 
iteration we group four spins into a 
new effective spin. By iterating this 
procedure we average over a 
larger and larger number of spins. 
Image taken from [MS].


