PhD Open Days

Non-toxic coatings for biofouling prevention on structured materials

PhD in Chemistry in Faculdade de Ciências, Universidade de Lisboa (CQB)

under CATSUS Programme

Olga Ferreira (olga.ferreira@tecnico.ulisboa.pt)

Introduction

Proof-of-concept

The unwanted spontaneous colonization by aquatic organisms on surfaces in contact with water forms the so-called Biofouling, causing serious environmental/economic penalties and health risks on several applications (e.g. water circuits, desalination systems) [1,2]. This work aims to develop a new nontoxic solution able to control this phenomenon on surfaces by providing new functional active agents (e.g. biocidal agents) capable of being tethered in polymeric

coatings, by following a new functionalization process [3].

Immobilization of the functionalized biocide Immobilization in the polymeric matrix **Biocides Functionalization** <u>b iocide</u> Mixture with OCN-R-NCO OCN-R-NHC=O ∧∕~ мн Patent WO2016/093719A1 the paint components Polymer backbone Econea-NCO

Figure 3: Polyurethane coatings with tethered biocide (3-6 wt. %) on acrylic substrates, after 8 months in an artificial sea water aquarium.

Antifouling effect improvements were obtained for coatings containing tethered Econea (3 to 6 wt.%).

Bioactivity assessment of coatings

Well Diffusion Method

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 Figure 1: FTIR and NMR spectra of biocidal agent and it's functionalized counterpart

FTIR and NMR analysis proved the \checkmark functionalization effectiveness and preservation of the main biocide structure.

Functionalization of the biocidal agents was confirmed.

Bioactivity assessment for functionalized biocides

for silicone coatings Staphylococcus aureus

Higher antimicrobial activity for coatings with tethered biocide, which is in accordance with the obtained antifouling behavior (proof-of-concept)

Different supports coated with bioactive paints

Biocidal polyurethane (A) and silicone (B) based coatings.

The original paint properties were not significantly affected.

Conclusions

- Commercial biocides were successfully immobilized in polymeric coatings and used to coat different structured substrates.
- Different supports coated with the biocide based paint films, evidenced uniform polymeric coating. Adhesion tests are on-going.

Figure 2: Bioactivity of biocides against different microorganisms

Similar Minimal Inhibitory Concentration (MIC) for Econea and Econea-NCO: \checkmark 3,91 µg/mL for the Staphylococcus aureus and Enterococcus faecalis bacteria

This approach is presented as a promising non-toxic antifouling strategy.

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through UID/MULTI/00612/2013. O. Ferreira and Dr. E. R. Silva thank the support from FCT, PhD Grant PD/BD/128370/2017 and Post-Doc fellowship SFRH/BPD/88135/2012, respectively. The authors also thank HEMPEL A/S, Prof. Dr. J. Bordado and P. Rijo for work collaboration.

References

[1] M. Lejars, A. Margaillan, C. Bressy. *Chemical Reviews.* 2012, (112) 4347-4390.

[2] E. R. Silva, O. Ferreira, J. C. Bordado. Journal of the Adhesion Society of Japan. 2015, (51) 239-240.

[3] E. R. Silva, O. Ferreira, J. C. Bordado, Patent Application, WO2016/093719 A1, 2016.

Dr. Elisabete R. Silva (Supervisor, FCUL; Invited Professor, IST)

Prof. Dr. João Gomes (Co- Supervisor, ISEL/IST)

phdopendays.tecnico.ulisboa.pt

PhD in Chemistry (CQB, FCUL) under CATSUS Programme