PhD Open Days

Multiscale modeling of pulsar magnetospheres

Advanced Program in Plasma Science and Engineering / APPLAuSE

F. Cruz¹ (fabio.cruz@tecnico.ulisboa.pt)

Motivation

Modeling one of the most extreme environments in the Universe

Q2) How to integrate kinetic-scale physics in global pulsar models? Previous global models [e.g. 2] agree on the general shape of pulsar magnetospheres, however the intrinsic character of phenomena such as the production and acceleration of the e^{-e+} plasma necessary to produce the observed radiation spectrum requires a kinetic approach [e.g. 3].

Pulsars are compact astronomical objects (M ~ M_{\odot} in R ~ 10 km) that gather a wealth of extreme physical conditions, making them **extraordinary physics laboratories** (for fields as diverse as general relativity, quantum mechanics, and plasma astrophysics). They are surrounded by strong magnetic fields $(B \sim 10^{12} \text{ G})$ and support very active, exotic magnetospheres.

The ultra-intense magnetic field existent in these regions is close to the Schwinger field for vacuum breakdown, and hence the dynamics of charged particles must take into account the self-consistent interaction with these fields, as well as radiation reaction and Quantum Electrodynamics (QED) mechanisms such as hard photon emission and their subsequent decay that results in electron-positron (e⁻e⁺) pairs.

Figure 1: a) composite optical/X-ray image of the Crab Nebula pulsar, credits: NASA/HST/CXC/ASU/J. Hester *et al.*; b) schematic illustration of a pulsar as a **Q3)** What are the key radiation emission mechanisms in pulsars? Can we combine the results from the previous multiscale approach and extract the key radiation signatures of pulsars from *ab initio* simulations?

Methodology and preliminary results Ab initio QED and radiation modules coupled with PIC

Current work includes the development of a modified spherical coordinate system in the OSIRIS framework. The different modules of the PIC loop are independently developed and benchmarked.

rotating neutron star.

Unravelling the dynamics of **astrophysical plasmas** in these environments is a critical step towards a complete understanding of a multitude of pulsar phenomenology, including:

- their radiation spectrum and spin down;
- their formation and the quasi-steady state of their magnetospheres;
- the acceleration of the most energetic particles in the Universe.

Accurate, ab initio numerical models of these high energy density systems require advanced simulation techniques and remain to be explored.

State-of-the-Art Main open scientific questions

Q1) How are pulsar magnetospheres formed?

The low altitude regions near the pulsar magnetic poles is thought to be the source of their magnetospheric e^{-e+} plasma. In these regions, the presence of strong fields leads to the development of a **cascade** of photons and e⁻e⁺ pairs.

QED cascade [e.g. 1]:

Photon emission $e^- \rightarrow e^- + \gamma$

a) example of particle trajectory obtained in the fields of a generalized electromagnetic mode; b) benchmark of the obtained trajectory with a numerical solution of the equations of motion (NDSolve).

Summary

x [c/Ω]

Multiscale analysis is critical to understand particle and radiation spectra of pulsar magnetospheres

- It requires the development of *ab initio* theoretical and numerical models of QED cascades and their connection with global, macroscopic models
- It has the potential to make impact in the field, resorting to a suite of recent numerical tools integrated in the OSIRIS framework

References and Acknowledgements

Figure 2: Preliminary *ab initio* simulation of the development of a QED cascade in an ultra-intense, curved magnetic field (comparable to pulsar gaps).

[1] P. A. Sturrock, ApJ, 164 (**1971**) [2] A. Philippov, and A. Spitkovsky, ApJL (**2014**) [3] B. Cerutti, and A. M. Beloborodov, SSR (2016) [4] M. Vranic *et al.*, CPC, 191 (**2015**) [5] M. Vranic *et al.*, CPC, 204 (**2016**) [6] J. L. Martins *et al.*, Proc. to SPIE, 7359 (**2009**) [7] R. A. Fonseca *et al.*, LNCS, 2331 (**2002**)

Work supported by the European Research Council (InPairs ERC-2015-AdG 695088), Fundação para a Ciência e Tecnologia (grant PD/BD/114307/2016), and the Calouste Gulbenkian Foundation through the 2016 Scientific Research Stimulus Program.

Supervisors: T. Grismayer¹, L. O. Silva¹

¹ Group of Lasers and Plasmas/IPFN, IST

phdopendays.tecnico.ulisboa.pt