PhD Open Days

Turbulent MagnetoRotational Instability in large scale PIC simulations

Advance Program in Plasma Science and Engineering (APPLAuSE)

GIANNANDREA INCHINGOLO (giannandrea.inchingolo@tecnico.ulisboa.pt) - GoLP/IPFN

Evolution of the poloidal magnetic field (B_1, B_3)

Linear regime 2.5 **Mirror Instability [3]**

The MagnetoRotational Instability (MRI) [1,2] is essential to understand the growth of **B** in astrophysical scenarios characterized by a state of differential rotation along central masses, like accretion disks.

Introduction

Magnetic filaments characteristic of the Mirror Instability [3]

Artistic representation of accretion disk (NASA)

A kinetic analysis is required for collisionless systems in order to study the influence of pressure anisotropies (Firehose & Mirror instabilities [3]) to MRI.

We modified our PIC (Particle In Cell) code OSIRIS 3.0 to observe the kinetic effects in a rotating system on large scale simulations.

Analysing the evolution of the MRI on large scale, we observed the comparison of a turbulent regime, that plays a crucial role for the saturation of the instability.

Shear co-rotating frame

Maxwell's equations

Zoom of the toroidal magnetic field (B_2) where it's possible to observe the oblique magnetic filaments typical of Mirror Instability.

Parasitic Instabilities [5]

Turbulence spectrum of $B_2 \sim k^{-5/3}$ 10^{-3}

Weak magnetic field	Non-relativistic limit	Small box approximation
$\frac{\omega_{ci}}{\alpha} << 1$	$v_0 = \alpha \times r_0 << c$	$L << r_0$

Simulation parameters

Mass ratio
$$\frac{m_i}{m_e} = 1$$
Alfén velocity $\frac{v_A}{c} = 0.0143$ Box size $8 \times 8 \lambda_0^2$ Beta parameter $\beta_0 = 100$ Magnetization $\frac{\omega_{ci}}{\alpha} = 11$ $\left(\lambda_0 = \frac{2\pi v_A}{\alpha}\right)$ 10^3 — Magnetic energy
— Kinetic energy
— β

Poloidal magnetic field (B_1, B_3) at different time steps where we can see the evolution from the linear regime of the MRI to the turbulence.

Fourier spectrum of the toroidal magnetic field (B_2) for both radial (red) and vertical (blue) directions. The dashed red line represents the scale of ion Larmor radius.

Conclusions & Future works

- Evolution of the MRI for large scale e-p plasma
- Linear regime: pressure anisotropies that activate the Mirror Instability on kinetic scale
- Non linear regime: channel flows
- End of the non linear regime: parasitic instabilities that stop the growth of the MRI destroying the channel flows
- Activation of turbulence that characterize the saturation of the MRI

1.5

10⁻⁴

Future works

ີ ສີ 300 (ບັນຍຸມ

- Characterization of the different parasitic instabilities
- Evolution of turbulent regime using the **3D** version of the code (currently under development)
- Extend the analysis to **different mass ratio**, to understand the influence of electron scale pressure anisotropies on linear evolution of the MRI

References

[1] S. A. Balbus, J. F. Hawley, ApJ, 376, 214 (1991) [2] S. W. Davis, et al., ApJ, 713, 1 (2010) [3] M. W. Kunz, et al., PRL, 112, 20 (2014) [4] H. N. Latter, et al., MNRAS, 394, 715 (2009) [5] J. Goodman, G. Xu, APJ, 432, 213, (1994)

Acknowledgements

Work partially funded by Portuguese FCT Fundação para a Ciência e a Tecnologia, under grant PD/BD/105885/2014 and the European Research Council (InPairs ERC-2015-AdG 695088)

T. Grismayer, L. O. Silva

GoLP/IPFN, Instituto Superior Técnico, ULisboa

phdopendays.tecnico.ulisboa.pt