PhD Open Days

Simultaneous integration of geophysical and production data for hydrocarbon reservoir modeling and characterization PHD PROGRAMME IN PETROLEUM ENGINEERING CATARINA MARQUES (catarinarfmarques@tecnico.ulisboa.pt)

1. Challenge

The conventional geo-modeling workflow uses available information such as: historical production data, geophysical data, and well-log data; individually. Integrate all the available data in a unique workflow is still one big challenge for the oil and gas industry..

2. Methodology

Figure 1: Traditional modeling methodology versus proposed methodology

The proposed methodology aims to achieve one solution – the same petrophysical property models – which minimizes simultaneously the objective functions of both methods: seismic inversion and history matching This proposed algorithm can be summarized in the following methodological sequence:

CERENA

Centro de Recursos

Naturais e Ambiente

- 1) In a first step, the models of subsurface petrophysical properties are obtained with seismic inversion (geostatistical seismic inversion). An average image of petrophysical properties is retained for the next step;
- 2) In a second step, to integrate the dynamic data into petrophysical properties model, a geostatistical history matching is proposed, conditioned to well data and the average model obtained from the seismic inversion.

3. Workflow

Figure 2: Proposed algorithm – simultaneous integration of geophysical and production data in hydrocarbon reservoir modeling

4. Results

Seismic Inversion Evolution (top) and History Matching Evolution (bottom)

Objective Function Evolution

5. Conclusions

This method is able to integrate seismic information into history matching workflow;
The final models have geological consistence, reproduce histograms, honour the experimental data (well log and production data), and reproduce the seismic data;
Uncertainty coming from seismic inversion and history matching is taken into account

6. Acknowledgements

The authors would like to thank to Schlumberger, to Matlab, to CERENA and to University of Lisbon.

7.References

. Mata-Lima H. (2008). Reservoir Characterization with Iterative Direct Sequential Co-simulation: Integrating Fluid Dynamic Data into Stochastic Model. Journal of Petroleum Science and Engineering, Vol. 62, pp. 59-72 . Soares A., Dietand J. D., Guerreiro L. (2007). Stochastic Inversion with a Global Perturbation Method: Petroleum Geostatistics Conference, EAGE, Extended Abstracts, A10.

Supervisor: Prof. Amilcar Soares and Prof. Leonardo Azevedo

PhD Programme in Petroleum Engineering

phdopendays.tecnico.ulisboa.pt