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INTRODUCTION 
 

In order to reach plasma state, high temperatures are needed to sustain 

ionization. However, the development in atom cooling and trapping methods 

have enabled studies in a new domain of plasma physics. In this new regime, 

the requirement of high temperature to create the plasma is no longer 

necessary. These new type of plasma is known as ultra-cold plasma. 

 

Usually, ultra-cold plasmas are formed through the ionization of atoms or 

molecules that have been cooled down to 1K [1] (typically, the temperature is 

of the order of micro kelvin in magneto optical traps [2, 3]). Such a cold initial 

sample is the exposed to a 10 ns laser pulse tuned near the ionization 

threshold, producing a plasma with a density ranging from 10^10 to 10^14  

cm^(-3). 

 

The main aim here is to present an introduction of the effects of the electron 

trapping leading to a model similar to the Thomas – Fermi model for heavy 

atomic systems [4]. In this case, when the trapped electron population 

dominates over the “free” electrons, the plasma qualitatively looks like a giant 

atom, where the ions play the role of a nucleus and the electrons compose the 

electronic cloud. 

 

THE MODEL 
 

We start describing the potential of the plasma 
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In the early stages of the plasma, the ions are approximately described by a 

Gaussian profile, associated with the neutral atoms confined in the MOT 

𝑛𝑖 = 𝑛0 exp[− 𝑟/𝜎
2] 

 

Combining both equations we obtain 
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where we have defined 
𝜙 =

𝑒 𝛷

𝑇𝑒
. 

 

The ions will create a positive electrostatic potential, in such a way that the 

classical energy of the electrons can be given by 
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When the potential energy of the ions overcomes the kinetic energy of the 

electrons, we have a trapping effect. The minimum velocity to escape the 

trapping potential is given by 
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The electrons that can escape the trapping potential follow a Boltzmann 

distribution associated to the energy presented before. On the other hand, the 

trapped electrons follow an uniform distribution, since they cannot leave the 

trapping radius. 

The electron density can be determined as follows 
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and the general expression for the electrostatic potential will be 
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We integrate in the strong confinement limit  𝜙 ≫ 1 
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This expression is very similar to the Thomas-Fermi potential obtained for 

heavy atomic species. The numerical solution of the potential and the profiles 

of the densities are shown in Fig. (1) for a spherically symmetric potential. 
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Figure 1: Left figure shows the Thomas – Fermi potential obtained in 

the strong confinement regime for two different Gaussian profiles. 

Right figure shows the ion (dashed lines) and electron (full lines) 

density profiles in the early stages of the plasma. 
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