PhD Open Days

 g_2

 g_4

Model Revision of Boolean Regulatory Networks

 g_3

PhD Program in Information Systems and Computer Engineering

Filipe Gouveia (filipe.gouveia@tecnico.ulisboa.pt)

Biological Regulatory Networks

Model Revision

Regulatory network composed of:

- Nodes (eg genes/proteins)
- Interactions (activations or inhibitions) Describe complex cellular processes.

Models of regulatory networks allow to:

- Computationally reproduce existing observations
- Test hypotheses
- Identify predictions in silico

Different formalisms can be used [1]:

• We use Boolean Logical Models [2]

Motivation

- Construction of models is still mainly a manual error-prone task
- As the model is extended or new data is acquired the model may become inconsistent

• \Rightarrow Model Revision

Cause of Inconsistency	Repair Operation
Wrong Regulatory Function	Function Change
Wrong Interaction Type	Edge Sign Flip
Wrong Regulator	Edge Removal
Missing Regulator	Edge Addition

Assumptions

- Monotone Non-degenerate Boolean regulatory functions
- Consider only Stable State observations
- Higher level of confidence in the correctness of the network topology than in the regulatory functions of the model

Optimization

- 1. Minimize number of add/remove edge operations
- 2. Minimize number of flip sign of an edge operations
- 3. Minimize number of change regulatory function operations

Approach

Use of Answer Set Programming (ASP) to

 Check model consistency and determine possible reasons of inconsistency [4]

There are 2^{2^k} Boolean functions with *k* regulators

Monotone Non-degenerate Boolean Functions

- Partial order set can be defined over the set of all monotone nondegenerate Boolean functions [3]
- Can be represented by an Hasse diagram

Calculate neighbour monotone non-degenerate Boolean functions

This tool determines if a model is consistent or gives a set of reasons of inconsistency if possible.

Given an inconsistent model and a set of reasons for inconsistency, the tool computes all the optimum set of repair operations in order to render the model consistent.

Conclusion

- Tool successfully tested using several well-known biological models
- Most instances repaired under 60 seconds
- Dimension of regulatory functions has the biggest impact on the

References

[1] Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology **9**(10), 770 (2008)

[2] Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. **42**(3), 563-585 (1973)

[3] Cury, J.E., Monteiro, P.T., Chaouiya, C.: Partial Order on the set of Boolean Regulatory Functions. arXiv preprint arXiv:1901.07623 (2019)

[4] Gouveia, F., Lynce, I., Monteiro, P.T.: Model revision of logical regulatory networks using logic-based tools. In: ICLP 2018 (Technical Communications). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

tool performance

Future Work

- Consider model dynamics in the model revision procedure
- Use heuristics to reduce the set of repairs to be produced

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) PhD grant SFRH/BD/130253/2017, national funds UID/CEC/50021/2019, grant SFRH/BSAB/143543/2019, and project grant PTDC/EEI-CTP/2914/2014

Supervisors: Pedro T. Monteiro and Inês Lynce

PhD in Information Systems and Computer Engineering

phdopendays.tecnico.ulisboa.pt